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Abstract
Cancer stem cells (CSCs) have been shown to accelerate tumor recurrence, radio-
therapy, and chemotherapy resistance. Immunotherapy is a powerful anticancer 
treatment that can significantly prolong the overall survival of patients with lung 
adenocarcinoma (LUAD). However, little is known about the function of genes 
related to tumor stemness and immune infiltration in LUAD. After integrat-
ing the tumor stemness index based on mRNA expression (mRNAsi), immune 
score, mRNA expression, and clinical information from the TCGA database, we 
screened 380 tumor stemness and immune (TSI)-related genes and constructed 
a five TSI-specific-gene (CPS1, CCR2, NT5E, ANLN, and ABCC2) signature 
(TSISig) using a machine learning method. Survival analysis indicated that 
TSISig could stably predict the prognosis of patients with LUAD. Comparison 
of mRNAsi and immune score between high- and low-TSISig groups suggested 
that TSISig characterized tumor stemness and immune infiltration. In addition, 
enrichment of immune subpopulations showed that the low-TSISig group held 
more immune subpopulations. GSEA revealed that TSISig had a strong associa-
tion with the cell cycle and human immune response. Further analysis revealed 
that TSISig not only had a good predictive ability for prognosis but could also 
serve as an excellent predictor of tumor recurrence and response to radiotherapy 
and immunotherapy in LUAD patients. TSISig might regulate the development 
of LUAD by coordinating tumor stemness and immune infiltration. Finally, a 
connectivity map (CMap) analysis demonstrated that the HDAC inhibitor could 
target TSISig.
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1   |   INTRODUCTION

Lung cancer has been one of the most diagnosed and le-
thal cancers worldwide in the past decade. In 2018, newly 
diagnosed lung cancer accounted for 12% of all human 
cancers, with 18.4% of the total number of deaths.1,2 Lung 
adenocarcinoma (LUAD) is the most common tissue 
subtype of lung cancer, accounting for almost half of all 
lung cancers.3 Although surgery, chemotherapy, and ra-
diotherapy have greatly improved the survival of patients 
with LUAD, the prognosis of patients with LUAD is still 
poor.4 Immunotherapy is a popular treatment currently. 
It could greatly improve the anti-cancer ability of pa-
tients.5 However, current clinical trials indicate that not 
all patients benefited from immunotherapy. Cancer stem 
cells (CSCs) have been shown to play an important role in 
tumor recurrence, radiotherapy, and chemotherapy resis-
tance with the tumor's ability of self-renewal, differentia-
tion, and proliferation.6,7 Interestingly, some studies have 
suggested that there might exist a class of genes that pro-
mote cancer development by maintaining tumor stemness 
and suppressing immune infiltration.8-12 Our study aimed 
to screen tumor stemness and immune infiltration (TSI)-
related genes and explore the underlying functions and 
mechanisms based on TCGA and GEO databases, which 
might provide a novel and potential signature for LUAD 
treatment.

In this study, we classified patients with LUAD into 
high/low-mRNAsi groups and high/low-immune score 
groups according to the optimal survival tipping points. 
Differentially expressed genes (DEGs) between the high-
mRNAsi-low-immune score group and others were iden-
tified as TSI-specific genes. Then, a five-gene signature 
(of CPS1, CCR2, NT5E, ANLN, and ABCC2) based on 
TSI-specific genes (TSISig) was constructed. All the five 
TSI-specific genes could serve as independent prognostic 
factors in LUAD. The comparison of mRNAsi and immune 
score between high-  and low-TSISig and GSEA analyses 
suggested that TSISig could characterize tumor stemness 
and immune infiltration well. Finally, authentication of 
clinical effects showed that TSISig could be regarded as 
an excellent predictor of prognosis, tumor relapse, and 
response to radiotherapy and immunotherapy in LUAD. 
HDAC inhibitors could serve as targeted inhibitors of 
TSISig according to CMap analysis.

2   |   MATERIALS AND METHODS

2.1  |  LUAD datasets and preprocessing

The workflow chart is displayed in Figure  S1. RNA-
sequencing data (FPKM values) and clinical annotations 

of LUAD patients were obtained from The Cancer Genome 
Atlas (TCGA; https://portal.gdc.cancer.gov) and the Gene 
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.
gov/geo). A study by Maciej Wiznerowicz et al. generated 
tumor stemness index based on mRNA expression (mR-
NAsi) of 512 patients with LUAD.13 They used one-class 
logistic regression machine-learning algorithm (OCLR) 
for multi-platform analyses of transcriptome, methyl-
ome, and transcription factor binding sites and finally 
stemness indices was obtained. After excluding patients 
with a follow-up period of less than 30 d, 484 patients with 
LUAD and their mRNA expression and somatic mutation 
data were selected from the TCGA database. ESTIMATE 
(Estimation of STromal and Immune cells in MAlignant 
Tumour tissues using Expression data) is a new algorithm 
that could infer the immune and stromal scores of sam-
ples based on immune or stromal cell-specific expression 
genes.14 Here, R package “estimate” was performed to cal-
culate the immune score of these samples. Among the 484 
patients, the 49 receiving radiotherapy had records of clin-
ical outcomes. Four external validation sets downloaded 
from GEO based on three different platforms were used 
to validate our gene signature (GSE31210 and GSE30219 
profiled by the Affymetrix HG-U133_Plus 2.0 platform, 
GSE72094 profiled by Rosetta/Merck Human RSTA 
Custom Affymetrix 2.0 microarray platform, and GSE36471 
profiled by Agilent-UNC-custom-4X44K platform). After 
examining the corresponding survival information of the 
four datasets, a total of 807 LUAD patients (GSE31210: 226 
LUAD patients, GSE30219: 83 LUAD patients, GSE72094: 
386 LUAD patients, GSE36471: 112 LUAD patients) with 
a follow-up period longer than 30 days were screened out 
for further validation. Among the four external valida-
tions, tumor relapse annotation and disease-free survival 
time were well documented in GSE30219. Additionally, 
mRNA expression data of 42  melanoma patients treated 
with immune checkpoint inhibitors (ICIs) and 25  mela-
noma patients treated with adoptive T cell therapy (ACT) 
were selected for the prediction of the response to im-
munotherapy. All of the raw CEL files collected from the 
GEO database were processed using the Robust Multichip 
Average (RMA) algorithm for background adjustment and 
quantile normalization. Details of the datasets used in this 
study are presented in Table 1.

2.2  |  Differential expression analysis

In this part, R package “survminer” (Available from: 
https://CRAN.R-proje​ct.org/packa​ge=survm​iner) was 
used to identify the best cut-off points for estimating sur-
vival in mRNAsi and immune score and draw survival 
curves.15 Based on the optimal survival tipping point of 

https://portal.gdc.cancer.gov
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72094
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36471
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72094
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36471
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219
https://CRAN.R-project.org/package=survminer
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mRNAsi and immune score, 484 patients with lung adeno-
carcinoma were divided into the high/low-mRNAsi group 
and high/low-immune score group. Kaplan–Meier curves 
for overall survival (OS) were analyzed using the R pack-
age “survival”. The differentially expressed genes (DEGs) 
between the high-mRNAsi-low-immune score group and 
other groups were generated by R package “limma” based 
on |LogFC| >1 and FDR <0.05. The upregulated genes and 
down-regulated genes in the high-mRNAsi-low-immune 
score group were regarded as TSI-related genes.

2.3  |  Construction of TSISig

A total of 484 LUAD patients from TCGA were randomly 
divided into training (n = 242) and test (n = 242) groups. 
Univariate Cox regression analysis was used to analyze 
the association between DEGs and overall survival time 
to screen out prognostic tumor stemness and immune 
infiltration (TSI)-related genes (p < 0.05). Least absolute 
shrinkage and selection operator (LASSO), which could 
generate a penalty function to compress the variable coef-
ficients in the regression model to prevent over fitting, was 
performed to further select prognostic TSI-related genes. 
After multivariate COX regression analysis, expression 
values of the selected TSI-related genes weighted by the 
multivariate Cox regression coefficient were subsequently 
converted to a risk score and TSISig was successfully con-
structed. Then, Kaplan–Meier curves for overall survival 
analysis of TSISig were illustrated using the “survival” R 

package. R package “survivalROC” was performed to gen-
erate a time-dependent receiver operating characteristic 
(ROC) curve.

2.4  |  Gene set enrichment 
analysis (GSEA) and tumor immune 
dysfunction and exclusion (TIDE)

To explore the potential function of TSISig, GSEA soft-
ware was used for enrichment analysis of the biologi-
cal process (BP) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG). TIDE is a newly developed computa-
tional method that can model the mechanisms of tumor 
immune evasion and predict the clinical response of 
patients to ICIs (http://tide.dfci.harva​rd.edu/)(30127​
393,32102694). In this study, we calculated the TIDE score 
of 484 LUAD patients from TCGA and predicted the clini-
cal response of these patients to ICIs.

2.5  |  Evaluation of TMB with TSISig in 
TCGA-LUAD

Somatic variants with the Mutation Annotation Format 
(MAF) for LUAD patients were obtained from the TCGA 
database. R package “maftools” was used for visualiza-
tion. The TMB value was calculated as (mutation fre-
quency with a number of variants)/the length of exons 
(38  million).16 According to the median TMB, patients 

T A B L E  1   Data sets used in this study

Data sets Source PMID
Sample size for 
each group Platform/Technology

Discovery set (n = 484) TCGA-LUAD \ lllumina HiSep

External testing set (n = 309) GSE31210 23028479 226 Affymetrix
Human Genome
U133 Plus 2.0 Array

GSE30219 23698379 83 Affymetrix
Human Genome
U133 Plus 2.0 Array

External validation set (n = 498) GSE36471 22590557 112 Agilent-UNC-custom-4X44K

GSE72094 26477306 386 Rosetta/Merck Human RSTA Custom 
Affymetrix 2.0 microarray

Immunetherapy response
validation set (n = 67)

TCGA-SKCM 30842092 42 lllumina HiSep

GSE10​0797 29170503 25 Illumina HiSeq

Radiotherapy response
validation set (n = 49)

TCGA-LUAD \ 49 lllumina HiSep

Relapse response validation set (n = 83) GSE30219 23698379 83 Affymetrix
Human Genome
U133 Plus 2.0 Array

http://tide.dfci.harvard.edu/)(30127393,32102694
http://tide.dfci.harvard.edu/)(30127393,32102694
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100797
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219
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with LUAD were further divided into high-TMB and low-
TMB groups.

2.6  |  Identification of potential 
compounds targeting TSISig

The connectivity map (CMap) is an online drug genome 
database17 that allows researchers to explore the potential 
relationship between genes and compounds. To screen 
the underlying candidate compounds targeting TSISig, 
we analyzed the DEGs between high risk and low risk 
using the R package “limma” and selected the top 150 
up-regulated genes and 150 down-regulated genes as 
genes co-expressed with TSISig to query the database. 
Compounds with enrichment scores ≤97 were regarded as 
effective inhibitors that could target TSISig.

2.7  |  Statistical analysis

The Wilcoxon rank-sum test was used to compare 
2 groups, and the Chi-square test was performed for com-
parisons of more than 2 groups. Survival curves for each 
data set were illustrated using the Kaplan–Meier method. 
Univariate Cox regression analysis was applied to calcu-
late the hazard ratios of indexes, and multivariate Cox 
regression analysis was used to measure independent 
prognostic factors. The Spearman method was used to cal-
culate the correlation coefficients. All statistical analyses 
were performed using R (version: 4.0.3). p < 0.05 was con-
sidered significant.

3   |   RESULTS

3.1  |  Identification of specific genes 
related to tumor stemness and immune 
infiltration

In this part, the aim of our study was to screen out TSI-
related genes for LUAD patients. Spearman analysis 
showed that mRNAsi was significantly negatively cor-
related with the immune score of 484 LUAD patients 
from TCGA (Figure 1A). After performing R package 
“survminer,” the best cut-off points for estimating OS in 
mRNAsi and the immune score were identified respec-
tively as 0.36 and 1798.36 (Figure  S2A,B). According 
to the best cut-off points for estimating survival, 484 
LUAD patients from TCGA were divided into high/
low-mRNAsi groups and high/low-immune score 
groups (Figure 1B,C). Then, four combinatorial groups 
were generated: high-mRNAsi-low-immune score 

group, high-mRNAsi-high-immune score group, low-
mRNAsi-low-immune score group, and low-mRNAsi-
high-immune score group. Kaplan–Meier curves for 
overall survival among the four combinatorial groups 
suggested that these four subgroups had significant dif-
ferences in OS (p = 0.0026) (Figure 1D), and the prog-
nosis of the high-mRNAsi-low-immune score group was 
worse than that of the other groups (p = 0.0025) (Figure 
1E). Comparisons of clinical characteristics (including 
gender, age, TNM stage, radiotherapy, race, and TMB) 
showed that gender, age, stage, T stage, and TMB were 
significantly different between the high-mRNAsi-low-
immune score group and others (Chi-square test: gen-
der, p = 0.027; age, p = 0.046; stage, p = 0.025; T stage, 
p = 0.04; TMB, p < 0.001) (Table 2). In order to explore 
the underlying mechanism in the poor OS groups, 94 
upregulated genes and 286 down-regulated genes in the 
high-mRNAsi-low-immune score group were identified 
using R package “limma” (|LogFC| >1 and FDR <0.05) 
(Figure 1F, Figure S2C). These genes were regarded as 
tumor stemness and immune infiltration (TSI)-related 
genes.

3.2  |  Construction and validation of TSISig

After univariate Cox regression analysis for the 
300  TSI-specific genes, 155  genes (p  <  0.05) were se-
lected for LASSO Cox regression analysis (Figure 
2A). Five TSI-specific genes (CPS1, CCR2, NT5E, 
ANLN, and ABCC2) were screened out by multivari-
ate Cox regression analysis for the construction of 
TSISig based on the TCGA-training set (C-index: 0.73) 
(Figure 2B). All the five TSI-specific genes were in-
dependent risk factors for OS in the training and test 
set. To facilitate clinical application, we calculated the 
TSISig risk score of samples using the following for-
mula: risk score  =  (−1.5502)  ×  (expression level of 
CCR2) + 0.748 × (expression level of CPS1) + 1.7482 × (ex-
pression level of NT5E)  +  1.5344  ×  (expression level 
of ANLN) + 1.1436 × (expression level of ABCC2). All 
patients in the training set (n = 242) were divided into 
high (n  =  121) and low-risk (n  =  121) groups accord-
ing to the median TSISig risk score (0.893). The OS 
survival analysis indicated that patients in the low-risk 
group had a better prognosis (p < 0.0001) (Figure 2C). 
The time-dependent ROC analysis showed that the area 
under the curve (AUC) of TSISig was 0.856 and 0.756 
at 1-  and 2-year OS respectively (Figure 2D). In addi-
tion, univariate and multivariate Cox regression analy-
ses for clinical factors and TSISig indicated that TSISig 
(HR:1.479, p < 0.001) and stage (HR: 1.503, p < 0.001) 
were independent predictors of LUAD (Figure 2E).
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To validate the predictive ability of TSISig, we calcu-
lated the TSISig risk score of LUAD patients in the TCGA 
testing set (n = 242), external testing set (n = 309), and 
external validation set (n  =  498). Patients were then di-
vided into high-  and low-risk groups with an optimal 
cut-off value (0.893) obtained from training set analysis. 
The OS analysis for the testing and validation sets showed 
that patients with LUAD in the low-risk group had a bet-
ter prognosis than those in the high-risk group (p < 0.05). 

Time-dependent ROC analysis was then performed to as-
sess the prognostic accuracy of TSISig, and the AUCs for 
1- and 2-year OS were all over 0.7 for the testing and val-
idation sets. Univariate and multivariate Cox regression 
analyses in the testing and validation sets demonstrated 
that TSISig and stage were independent prognostic factors 
for LUAD patients (Figure3A–C, Figure  S3A–G). These 
results suggested that TSISig had a good predictive ability 
for the OS of patients with LUAD.

F I G U R E  1   Identification of TSI-specific genes. (A) Correlation between mRNAsi and immune score in LUAD based on TCGA database. 
(B-C) Kaplan–Meier curves for overall survival in patients with LUAD based on the optimal survival tipping points of immune score 
or mRNAsi. (D-E) Kaplan–Meier curves for overall survival among four combination groups. (F) Identification of DEGs between high-
mRNAsi-low-immune score group and others (|LogFC| >1 and FDR <0.05).
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T A B L E  2   Patient characteristics (bold values means that p value is <0.05)

Variable
Low immunescore & High 
mRNAsi (n = 128)

Others 
(n = 356)

Total 
(n = 484) X-squared p-value

Gender 4.9143 0.027

Female 57 201 258

Male 71 155 226

Age 6.1678 0.046

<65 years 68 144 212

≥65 years 58 204 262

Unknown 2 8 10

Stage 11.154 0.025

I 53 206 259

II 37 77 114

III 26 52 78

IV 10 15 25

Unknown 2 6 8

T 9.3981 0.04

T1 31 130 161

T2 73 187 260

T3 17 25 42

T4 6 12 18

Unknown 1 2 3

N 7.6201 0.11

N0 74 239 313

N1 29 63 92

N2 24 43 67

N3 0 2 2

Unknown 1 9 10

M 4.0332 0.13

M0 86 232 318

M1 10 14 24

Unknown 32 110 142

RT 3.3163 0.19

Yes 19 38 57

No 85 266 351

Unknown 24 52 76

Race 0 3.8963 0.27

African American 19 34 53

White 92 279 371

Asian 3 4 7

Unknown 14 39 53

TMB 28.665 <0.001

High 88 149 237

Low 37 201 238

Unknown 3 6 9
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3.3  |  Function validation of TSISig

To validate whether TSISig could coordinate tumor 
stemness and immune infiltration, 484 LUAD patients 
from TCGA were ranked based on mRNAsi (Figure 4A) 

and immune score (Figure 4B). Compared to the high-
risk group, the low-risk group had lower mRNAsi and 
higher immune score (Figure 4C). Then, 10 immune 
subpopulations of 484 LUAD tissues from TCGA were 
estimated using the MCP counter. Enrichment analysis 

F I G U R E  2   Construction of TSISig based on TCGA training set. (A) LASSO Cox regression analysis for TSI-specific genes. (B) 
Multivariate Cox analysis for the five TSI-specific genes contained in TSISig. (C) Overall survival analysis for the low and high TSISig groups. 
(D) Time-dependent ROC curve for prediction of prognosis in the training set. (E) Forest plot for the HRs of TSISig and clinicopathological 
factors calculated by univariate Cox and multivariate Cox analysis.
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of the immune subpopulations indicated that myeloid 
dendritic cells, B lineage, T cells, endothelial cells, 
monocytic lineage, CD8 T cells, cytotoxic lymphocytes, 
and neutrophils were highly enriched in the low-risk 
group, and fibroblasts and NK cells were mainly en-
riched in the high group (Figure 4D). GSEA showed that 
the high-risk group was highly associated with the cell 
cycle, DNA replication, P53 signaling pathway, and reg-
ulation of cell aging, and the low-risk group was mainly 
enriched in cell adhesion molecules (CAMs), B cell re-
ceptor signaling pathway, T cell-mediated immunity, 
humoral immune response, immune response regula-
tion signaling pathway, and activation of the immune 
response (Figure 4E). All these results suggested that 

TSISig was significantly correlated with tumor stemness 
and immune infiltration.

3.4  |  TSISig was associated with TMB

Considering the significant difference in TMB between 
the high-mRNAsi-low-immune score group and the 
others, we tried to analyze the relationship between 
TSISig and TMB. In the waterfall map of the top 20 mu-
tations, we found that the mutation frequency in the 
high-risk group was significantly higher than that in 
the low-risk group (Figure 5A). The box plot showed 
that the high-risk group had a higher TMB than the 

F I G U R E  3   Validation of TSISig in TCGA testing set, external testing set, and GSE72094. (A) Overall survival analysis, time-dependent 
ROC curve, and multivariate Cox analysis in TCGA testing set. (B) Overall survival analysis, time-dependent ROC curve, and multivariate 
Cox analysis in external testing set. (C) Overall survival analysis, time-dependent ROC curve, and multivariate Cox analysis in GSE72094.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72094
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72094
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low-risk group (p < 0.001) (Figure 5B). Chisp-test anal-
ysis for the top 20  gene mutations showed that TP53, 
TTN, RYR2, CSMD3, LRP1B, ZFHX4, USH2A, SPTA1, 

FLG, NAV3, and FAT3 had higher mutation rates in the 
high-risk group (Table S1). OS analysis suggested that 
patients with high TSISig and low TMB had the worst 

F I G U R E  4   Function characterization of TSISig. (A-B) A general description of the association between mRNAsi or immune score and 
TSISig or clinicopathological factors. (C) Box plots for the distribution of mRNAsi/immune score in low and high TSISig. (D) Enrichment of 
immune subpopulations in low and high TSISig. (E) KEGG pathways and biological process enrichment analysis using GSEA.
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prognosis, while patients with low TSISig and high 
TMB had the best prognosis (p < 0.0001) (Figure 5C). 
In summary, there was a positive correlation between 

TSISig and TMB, and the combined detection of TSISig 
and TMB might better predict the prognosis of patients 
with LUAD.

F I G U R E  5   Correlation between cancer somatic genome and TSISig. (A) Distribution of top 20 highly variant mutated genes in low and 
high TSISig. (B) Difference of tumor mutation burden (TMB) between low and high TSISig. (C) Kaplan–Meier curves for four combination 
groups classified by TSISig and TMB.

F I G U R E  6   Estimation of predictive ability for TSISig to immunotherapy response. (A) Association between PD-1 expression and TSISig. 
(B) Overall survival analysis for four combination groups stratified by PD-1 and TSISig. (C) Kaplan–Meier curves for patients with low 
and high TSISig in GSE10​0797. (D) Clinical response rate of patients with low and high TSISig for adoptive T cell therapy (ACT) in GSE10​
0797 (complete response [CR], partial response [PR], stable disease [SD], progressive disease [PD]). (E) Difference of TSISig risk score in 
different ACT response (Wilcoxon rank-sum test, p = 0.019). (F) ROC curves estimating the predictive value of TSISig, PD-1 expression, 
and the combination of TSISig and PD-1 in GSE10​0797. (G) Kaplan–Meier curves for patients with low and high TSISig in TCGA-SKCM 
patients with ICIs treatment. (H) Clinical response rate of patients with low and high TSISig for ICIs in TCGA-SKCM data set. (I) Difference 
of TSISig risk score in different ICIs therapy response (Wilcoxon rank-sum test, p = 0.015). (J) ROC curves estimating the predictive value 
of TSISig, PD-1 expression, TMB, and the combination of TSISig and PD-1 in TCGA-SKCM patients with ICIs treatment. (K) Correlation 
between tumor immune dysfunction and exclusion (TIDE) score and TSISig in TCGA-LUAD. (L) Distribution of TIDE score in low and 
high TSISig (Wilcoxon rank-sum test, p < 0.001). (M) Clinical response rate of patients with low and high TSISig for ICIs therapy in TCGA-
LUAD. (N) Difference of TSISig risk score in different ICIs therapy response predicted by TIDE (Wilcoxon rank-sum test, p = 0.005).

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100797
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100797
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100797
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100797
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3.5  |  Predictive ability of TSISig of 
immunotherapeutic benefits

Emerging evidence has suggested that monoclonal anti-
bodies against PD1 immune checkpoints could inhibit the 
development of cancers and prolong the patient's OS.18 

After examining the correlation between PD-1 expression 
and TSISig risk score in TCGA-LUAD patients, we found 
that there was a significant negative correlation between 
TSISig and PD-1 expression (Figure 6A). Then, 484 LUAD 
patients from TCGA were classified into high-PD-1 ex-
pression and low-PD-1 expression groups according to 
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the median expression of PD-1. Kaplan–Meier curves for 
OS showed that high-PD-1 expression and low-TSISig 
group had the best prognosis compared to the other three 
groups (Figure 6B). These results led us to believe that 
TSISig might be able to predict the response of LUAD pa-
tients to immunotherapy. At present, the study of tumor-
associated antigen in melanoma is the most successful. 
Compared with other cancers, melanoma is a tumor with 
stronger immunogenicity and better responses to immu-
notherapy.19 Therefore, the majority of the current im-
munotherapy studies aimed at melanoma. We searched 
the GEO and TCGA databases and found no suitable im-
munotherapeutic LUAD expression data. Considering the 
lack of public data on immunotherapy for lung cancer, two 
melanoma datasets treated with immune checkpoint in-
hibitors or ACT were downloaded to examine the predic-
tive ability of TSISig. According to TSISig, we calculated 
the risk score of patients in TCGA-SKCM (treated with 
ICIs, n = 42) and GSE10​0797 (treated with ACT, n = 25). 
Survival analysis indicated that the low-risk group had a 
better prognosis than the high-risk group in both TCGA-
SKCM and GSE10​0797 (Figure 6C,G). However, we did 
not obtain meaningful results (GSE10​0797, p  =  0.19; 
TCGA-SKCM, p = 0.21), which might have been due to 
the small sample size. Moreover, in both cohorts, the pro-
portion of CR/PR patients in the high-risk group was sig-
nificantly lower than that in the low-risk group (GSE10​
0797: high-risk group: CR/PR: 26%, PD/SD: 74%; low-risk 
group: CR/PR: 83%, PD/SD: 17%; TCGA-SKCM: high-risk 
group: CR/PR: 44%, PD/SD: 56%; low-risk group: CR/PR: 
67%, PD/SD: 33%) and PD/SD patients had higher TSISig 
risk scores than CR/PR patients (GSE10​0797, p = 0.019; 
TCGA-SKCM, p = 0.015) (Figure 6D,E,H,I). Furthermore, 
compared to using TSISig and PD-1 expression alone, the 
combined score was the best at predicting CR/PR in two 
cohorts (GSE10​0797, AUC: TSISig: 0.717, PD-1: 0.687, 
TSISig & PD-1: 0.780; TCGA-SKCM, AUC: TSISig: 0.703, 
PD-1: 0.505, TSISig & PD-1: 0.725). The predictive ability 
of TSISig for the response to immunotherapy was higher 
than that of TMB in TCGA-SKCM (AUC: TSISig: 0.703, 
TMB: 0.665) (Figure 6F,J). Additionally, we performed 
TIDE online tools to estimate the response and TIDE 
scores of 484 LUAD patients from TCGA to ICIs, and the 
results demonstrated that TSISig was significantly posi-
tively correlated with TIDE score (r = 0.16, p = 0.00041) 
(Figure 6K). Patients with high TSISig had higher TIDE 
scores than patients with low TSISig (p < 0.001) (Figure 
6L), and the proportion of patients with true response to 
ICIs in the high-TSISig group was also higher than that in 
the low-TSISig group (high TSISig: true: 21%, false: 79%; 
low TSISig: true, 28%; false, 72%) (Figure 6M). The box 
plot showed that the group with a true response to ICIs 
had lower TSISig scores (p = 0.005) (Figure 6N). All these 

results suggest that TSISig could serve as an excellent pre-
dictor of immunotherapeutic benefits.

3.6  |  Predictive ability of TSISig 
for the response to radiotherapy and 
tumor relapse

Previous studies have revealed that radiotherapy and im-
mune suppression might improve tumor stemness and 
lead to tumor relapse.20 We attempted to investigate the 
predictive ability of TSISig for the response to radiother-
apy and tumor relapse. Forty-nine patients with LUAD 
who received radiotherapy were selected for the predic-
tion of their response to radiotherapy. Patients with low 
TSISig showed a better prognosis (OS, p = 0.05) (Figure 
7A) and a higher proportion of CR/PR response (high-risk 
group: CR/PR: 28%, PD/SD: 72%; low-risk group: CR/PR: 
45%, PD/SD: 55%) (Figure 7B). Moreover, a higher TSISig 
risk score was observed in PD/SD patients (p  =  0.025) 
(Figure 7C), and the ROC curve showed a good ability of 
TSISig to predict the response to RT (AUC: 0.691) (Figure 
7D). Furthermore, we found that patients with low TSISig 
in GSE30219  had a longer disease-free survival (DFS, 
p = 0.082) (Figure 7E) and lower tumor recurrence rate 
than patients with high TSISig (high-risk group: relapse, 
44%; no-relapse, 56%; low-risk group, relapse: 25%, no-
relapse: 75%) (Figure 7F). In addition, our results demon-
strated that tumor relapse patients had higher TSISig risk 
scores (p  =  0.047) (Figure 7G), and TSISig could partly 
predict tumor recurrence (AUC = 0.636) (Figure 7H).

3.7  |  Mining underlying compounds or 
inhibitors targeting TSISig based on CMap

The top 150 upregulated genes and 150 downregulated 
genes in high TSISig were selected to query the CMap 
database. Compounds or inhibitors with an enrichment 
score ≤-97 were considered effective inhibitors targeting 
TSISig. Only the compounds that were treated with A549 
cells (lung cancer cells) were selected. Finally, 65 com-
pounds or inhibitors and related 48 mechanisms of action 
from the mode-of-action (MoA) analysis were screened 
out (Figure 8, Table S2). The top hits showed that 9 inhibi-
tors (THM-I-94, apicidin, NSC-3852, vorinostat, HC-toxin, 
panobinostat, trichostatin-a, ISOX, and dacinostat) shared 
the MoA of HDAC inhibition, and 8 inhibitors (doxoru-
bicin, etoposide, irinotecan, camptothecin, mitoxantrone, 
teniposide, pirarubicin, amonafide) shared the MoA of 
topoisomerase inhibition. In addition, PHA-793887 and 
JNJ-7706621  shared the MoA of CDK inhibition, and 
manumycin-a and CAY-10470 shared the MoA of NFkB 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100797
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100797
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100797
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100797
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100797
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100797
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100797
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219
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pathway inhibition. Two compounds (PI-103 and everoli-
mus) were mTOR inhibitors.

4   |   DISCUSSION

CSCs were defined as a subgroup of tumor cells that could 
initiate and maintain tumor growth through the abil-
ity of self-renewal, differentiation, and proliferation.21-23 
Previous studies have suggested that CSCs contribute 
to the development, chemotherapy resistance, radia-
tion resistance, and recurrence of various tumors such 
as NSCLC,24,25 breast cancer,26 liver cancer,27 and mela-
noma,28 which might be related to increased mutation 
load, cancer/testis antigen expression, and intratumoral 
heterogeneity in cancers with high stemness.29 Although 
some studies have indicated that a higher tumor mutation 
load could prolong the OS of tumor patients by enhancing 
immune infiltration,30 a significant negative association 

between cancer stemness and anticancer immunity was 
observed.13,29 Therefore, we believe that there might be a 
relationship between tumor stemness and immunosup-
pression. Lengerke et al. and Giancotti et al. suggested 
that there existed a class of specific genes that could regu-
late cancer development by coordinating tumor stemness 
maintenance and immune suppression,8,9 which was con-
sistent with our hypothesis. In this study, we attempted 
to comprehensively understand the underlying relation-
ship and related mechanisms between tumor stemness 
and immune infiltration in LUAD by exploring the tumor 
stemness and immune infiltration (TSI)-specific genes.

mRNAsi was calculated to present the tumor stem-
ness index, and the immune score was used to estimate 
the immune infiltration level of each LUAD patient. 
The correlation analysis between mRNAsi and immune 
score revealed that tumor stemness was highly nega-
tively correlated with immune infiltration (R  =  −0.42, 
p  <  0.0001). After classifying patients with LUAD into 

F I G U R E  7   Assessment of predictive ability for TSISig to radiotherapy and tumor recurrence. (A) Kaplan–Meier curves for patients 
with low and high TSISig in TCGA-LUAD patients with radiotherapy. (B) Clinical response rate of patients with low and high TSISig for 
radiotherapy in TCGA-LUAD patients with radiotherapy (complete response [CR], partial response [PR], stable disease [SD], progressive 
disease [PD]). (C) Difference of TSISig risk score in different radiotherapy response (Wilcoxon rank-sum test, p = 0.025). (D) ROC curves 
estimating the predictive value of TSISig to radiotherapy in TCGA-LUAD patients with radiotherapy. (E) Kaplan–Meier curves for disease 
free survival (DFS) in patients with low and high TSISig in GSE30219. (F) Tumor relapse rate of patients with low and high TSISig in 
GSE30219. (G) Difference of TSISig risk score between relapse and no-relapse LUAD patients (Wilcoxon rank-sum test, p = 0.047). (H) ROC 
curves estimating the predictive value of TSISig to tumor recurrence in GSE30219.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219
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high/low-mRNAsi and high/low-immune score groups 
according to the optimal survival tipping point, four 
combinations were generated. Survival analysis showed 
that the high-mRNAsi-low-immune score group had the 
worst OS (p < 0.01). Clinical characteristic analysis in-
dicated that male patients and patients aged ≤65  years 
might have a higher tumor stemness index and lower 
immune infiltration level. Advanced stage patients 
were inclined to have a higher tumor stemness index 
and lower immune infiltration level, which meant that 
these patients might have stronger immune suppres-
sion and tumor heterogeneity. Then, 380 DEGs between 
the high-mRNAsi-low-immune score group and others 
were screened out as TSI-specific genes (|LogFC| >1 and 
FDR <0.05). Finally, a five-gene signature based on TSI-
specific genes was constructed. Survival and ROC curve 
analysis in the training group, external testing, and exter-
nal validation sets proved that TSISig had a good predic-
tive ability for clinical prognosis. Moreover, univariate 

and multivariate Cox analyses showed that TSISig and 
stage were independent prognostic indexes in LUAD. 
Compared with some models, our model has better pre-
diction ability. A ten immune-related genes signature 
constructed by Jiaona Zhu et al.31 and IPSLUAD signa-
ture established by Jie He32 were believed to predict the 
prognosis of patients well. Compared with their signa-
tures, TSISig had a higher AUC value in terms of predict-
ing prognosis which indicated TSISig might have a better 
predictive ability. Although compared with the genes 
signature of Yongjian Zhang et al. TSISig had a lower 
AUC value,33 TSISig was the first genes signature that 
could simultaneously predict the recurrence of LUAD 
and the efficacy of immunotherapy and radiotherapy. 
Further functional verification showed that TSISig was 
negatively correlated with immune score and positively 
correlated with mRNAsi. Immune cell enrichment re-
vealed that except for NK cells and fibroblasts, the other 
8 kinds of immune cells, including CD8 T cells, cytotoxic 

F I G U R E  8   Heatmap exhibiting 65 compounds (enrichment score≤-97) and 48 related mechanisms of action (MOA, rows) which might 
target TSISig. Only the compounds that treated A549 cells (lung cancer cell) were selected.
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lymphocytes, and cells were mainly concentrated in the 
low-TSISig group and GSEA, suggesting that TSISig was 
mainly enriched in tumors and immune-related path-
ways. All these results were consistent with our previous 
work. Among the five TSI-specific genes, CPS1, NT5E, 
ANLN, and ABCC2 were correlated with poor progno-
sis, while CCR2 was correlated with better prognosis. 
CPS1, the urea cycle enzyme carbamoyl phosphate syn-
thetase-1, could promote tumor growth by maintaining 
pyrimidine pools and DNA synthesis in KRAS/LKB1-
mutant lung cancer cells.34 NT5E (also known as CD73) 
was identified as an ecto-5'-nucleotidase that could in-
duce antitumor immune responses and promote the pro-
liferation, angiogenesis, and metastasis of cancers.35-37 
Some studies have regarded CD73 as a new immune 
checkpoint37 and CD73 inhibitors are currently in the 
clinical trial stage of lung cancer.38 ANLN encodes an 
actin-binding protein that is necessary for cytokinesis. 
Previous studies have suggested that ANLN plays an 
important role in cell growth and migration of breast 
cancer,39 LUAD,40 and pancreatic cancer.41 ABCC2 from 
the superfamily of ATP-binding cassette (ABC) trans-
porters has been widely reported in chemoradiotherapy 
resistance,42,43 and MB et al. found that ABCC2 was co-
expressed with stem cell markers.44 CCR2 is a chemo-
kine that specifically mediates monocyte chemotaxis. 
A recent study has indicated that CCR2 is significantly 
associated with immune infiltration and metastasis of 
lung cancer.45 All five genes could serve as independent 
prognostic factors in LUAD.

TMB is a novel clinical subtype and presents an ex-
cellent predictive ability for immunotherapy in various 
cancers.46,47 Our results suggested that TSISig was sig-
nificantly positively associated with TMB (p < 0.001) and 
negatively associated with the immune score in LUAD 
patients, and patients with low TSISig and high TMB 
showed the best prognosis (p < 0.0001). Denton et al. con-
firmed that cancer-associated fibroblasts (CAFs) could 
not only inhibit the migration of immune cells to the 
tumor microenvironment and suppress their function 
but could also maintain tumor stemness, thus promoting 
the occurrence of cancer.48 Our enrichment analysis for 
immune cells showed that the high-TSISig group con-
tained higher CAFs than the low-TSISig group. These 
results revealed that TSISig might function by directly 
coordinating tumor stemness and immune suppression. 
Immune checkpoint inhibitors for PD-1 have become a 
popular therapy because of a good response to them by 
tumor patients.49,50 The discovery of PD-1 expression in 
melanoma stem cells suggested that PD-1 might play a 
role in regulating tumor stemness.51 Our results showed 
that TSISig was negatively correlated with PD-1 expres-
sion and that patients with low TSISig and high PD-1 

expression had the best prognosis, while those with high 
TSISig and low PD-1 expression exhibited the worst 
prognosis. Therefore, we assumed that the combination 
of TSISig and PD-1 might improve the predictive ability 
of TSISig or PD-1 for the response to immunotherapy. 
Then, ROC curve analysis in the two datasets treated 
with immunotherapy suggested that combination anal-
ysis of TSISig and PD-1 led to a better predictive ability 
for immunotherapy compared to TSISig or PD-1 alone. 
Meanwhile, the predictive ability of TSISig for the re-
sponse to immunotherapy was much better than that of 
PD-1 or TMB. Additionally, TIDE analysis also revealed 
the feasibility and accuracy of TSISig in predicting the 
immune response. These results suggest that TSISig 
could serve as an excellent predictor of the response to 
immunotherapy in patients with LUAD.

CSCs can promote tumor growth, recurrence, and me-
tastasis, and show resistance to chemotherapy and radio-
therapy in numerous tumors.20,52,53 Thiery et al. thought 
that these adverse reactions may be caused by tumor 
stemness activation and immunosuppression caused by 
CAFs.54 Giancotti et al. found that PRC1 could promote 
prostate cancer metastasis by coordinating stemness and 
immune suppression.8 In the current study, we tried to 
measure the predictive ability of TSISig for the response 
to radiotherapy and tumor relapse. A higher rate of re-
sponse to radiotherapy was demonstrated in patients 
with low TSISig. The ROC curve showed that TSISig had 
a good predictive ability for the response to radiotherapy 
(AUC  =  0.691). Moreover, we found that patients with 
high TSISig were more likely to have tumor recurrence. 
An AUC value of 0.636 indicated that TSISig could predict 
LUAD recurrence partly. Finally, potential inhibitors such 
as HDAC inhibitors, CDK inhibitors, and NFkB pathway 
inhibitors targeting TSISig were screened out by CMap 
analysis. A previous study showed that HDAC inhibitors 
could enhance the efficacy of immunotherapy for lung 
tumors by reversing immunosuppression.55 Consistently, 
Pan et al. found that HDAC inhibitors could suppress mi-
gration and eliminate CSCs in uveal melanoma.56 These 
results further confirmed that TSISig could well charac-
terize tumor stemness and immune infiltration of LUAD. 
HDAC inhibitors might serve as specific drugs for TSISig.

In summary, our study constructed a five-gene sig-
nature (TSISig) based on tumor stemness and immune-
related specific genes. TSISig could not only accurately 
predict the prognosis of patients with LUAD within 
2 years, but it could also be regarded as a novel and fea-
sible predictor of LUAD recurrence and the response to 
immunotherapy or radiotherapy. Patients with low TSISig 
were more inclined to benefit from immunotherapy or 
radiotherapy. HDAC could inhibit the development of 
LUAD by targeting TSISig.
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